aboutsummaryrefslogtreecommitdiffstats
path: root/src/crypto/sha1.c
blob: ceec1a49a6db812145c7a1e9da27979d4394bfba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/*
 * SHA1 hash implementation and interface functions
 * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Alternatively, this software may be distributed under the terms of BSD
 * license.
 *
 * See README and COPYING for more details.
 */

#include "includes.h"

#include "common.h"
#include "sha1.h"
#include "md5.h"
#include "crypto.h"


/**
 * hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104)
 * @key: Key for HMAC operations
 * @key_len: Length of the key in bytes
 * @num_elem: Number of elements in the data vector
 * @addr: Pointers to the data areas
 * @len: Lengths of the data blocks
 * @mac: Buffer for the hash (20 bytes)
 */
void hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
		      const u8 *addr[], const size_t *len, u8 *mac)
{
	unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
	unsigned char tk[20];
	const u8 *_addr[6];
	size_t _len[6], i;

	if (num_elem > 5) {
		/*
		 * Fixed limit on the number of fragments to avoid having to
		 * allocate memory (which could fail).
		 */
		return;
	}

        /* if key is longer than 64 bytes reset it to key = SHA1(key) */
        if (key_len > 64) {
		sha1_vector(1, &key, &key_len, tk);
		key = tk;
		key_len = 20;
        }

	/* the HMAC_SHA1 transform looks like:
	 *
	 * SHA1(K XOR opad, SHA1(K XOR ipad, text))
	 *
	 * where K is an n byte key
	 * ipad is the byte 0x36 repeated 64 times
	 * opad is the byte 0x5c repeated 64 times
	 * and text is the data being protected */

	/* start out by storing key in ipad */
	os_memset(k_pad, 0, sizeof(k_pad));
	os_memcpy(k_pad, key, key_len);
	/* XOR key with ipad values */
	for (i = 0; i < 64; i++)
		k_pad[i] ^= 0x36;

	/* perform inner SHA1 */
	_addr[0] = k_pad;
	_len[0] = 64;
	for (i = 0; i < num_elem; i++) {
		_addr[i + 1] = addr[i];
		_len[i + 1] = len[i];
	}
	sha1_vector(1 + num_elem, _addr, _len, mac);

	os_memset(k_pad, 0, sizeof(k_pad));
	os_memcpy(k_pad, key, key_len);
	/* XOR key with opad values */
	for (i = 0; i < 64; i++)
		k_pad[i] ^= 0x5c;

	/* perform outer SHA1 */
	_addr[0] = k_pad;
	_len[0] = 64;
	_addr[1] = mac;
	_len[1] = SHA1_MAC_LEN;
	sha1_vector(2, _addr, _len, mac);
}


/**
 * hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104)
 * @key: Key for HMAC operations
 * @key_len: Length of the key in bytes
 * @data: Pointers to the data area
 * @data_len: Length of the data area
 * @mac: Buffer for the hash (20 bytes)
 */
void hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
	       u8 *mac)
{
	hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
}


/**
 * sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1)
 * @key: Key for PRF
 * @key_len: Length of the key in bytes
 * @label: A unique label for each purpose of the PRF
 * @data: Extra data to bind into the key
 * @data_len: Length of the data
 * @buf: Buffer for the generated pseudo-random key
 * @buf_len: Number of bytes of key to generate
 *
 * This function is used to derive new, cryptographically separate keys from a
 * given key (e.g., PMK in IEEE 802.11i).
 */
void sha1_prf(const u8 *key, size_t key_len, const char *label,
	      const u8 *data, size_t data_len, u8 *buf, size_t buf_len)
{
	u8 counter = 0;
	size_t pos, plen;
	u8 hash[SHA1_MAC_LEN];
	size_t label_len = os_strlen(label) + 1;
	const unsigned char *addr[3];
	size_t len[3];

	addr[0] = (u8 *) label;
	len[0] = label_len;
	addr[1] = data;
	len[1] = data_len;
	addr[2] = &counter;
	len[2] = 1;

	pos = 0;
	while (pos < buf_len) {
		plen = buf_len - pos;
		if (plen >= SHA1_MAC_LEN) {
			hmac_sha1_vector(key, key_len, 3, addr, len,
					 &buf[pos]);
			pos += SHA1_MAC_LEN;
		} else {
			hmac_sha1_vector(key, key_len, 3, addr, len,
					 hash);
			os_memcpy(&buf[pos], hash, plen);
			break;
		}
		counter++;
	}
}


#ifndef CONFIG_NO_T_PRF
/**
 * sha1_t_prf - EAP-FAST Pseudo-Random Function (T-PRF)
 * @key: Key for PRF
 * @key_len: Length of the key in bytes
 * @label: A unique label for each purpose of the PRF
 * @seed: Seed value to bind into the key
 * @seed_len: Length of the seed
 * @buf: Buffer for the generated pseudo-random key
 * @buf_len: Number of bytes of key to generate
 *
 * This function is used to derive new, cryptographically separate keys from a
 * given key for EAP-FAST. T-PRF is defined in RFC 4851, Section 5.5.
 */
void sha1_t_prf(const u8 *key, size_t key_len, const char *label,
		const u8 *seed, size_t seed_len, u8 *buf, size_t buf_len)
{
	unsigned char counter = 0;
	size_t pos, plen;
	u8 hash[SHA1_MAC_LEN];
	size_t label_len = os_strlen(label);
	u8 output_len[2];
	const unsigned char *addr[5];
	size_t len[5];

	addr[0] = hash;
	len[0] = 0;
	addr[1] = (unsigned char *) label;
	len[1] = label_len + 1;
	addr[2] = seed;
	len[2] = seed_len;
	addr[3] = output_len;
	len[3] = 2;
	addr[4] = &counter;
	len[4] = 1;

	output_len[0] = (buf_len >> 8) & 0xff;
	output_len[1] = buf_len & 0xff;
	pos = 0;
	while (pos < buf_len) {
		counter++;
		plen = buf_len - pos;
		hmac_sha1_vector(key, key_len, 5, addr, len, hash);
		if (plen >= SHA1_MAC_LEN) {
			os_memcpy(&buf[pos], hash, SHA1_MAC_LEN);
			pos += SHA1_MAC_LEN;
		} else {
			os_memcpy(&buf[pos], hash, plen);
			break;
		}
		len[0] = SHA1_MAC_LEN;
	}
}
#endif /* CONFIG_NO_T_PRF */


#ifndef CONFIG_NO_TLS_PRF
/**
 * tls_prf - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246)
 * @secret: Key for PRF
 * @secret_len: Length of the key in bytes
 * @label: A unique label for each purpose of the PRF
 * @seed: Seed value to bind into the key
 * @seed_len: Length of the seed
 * @out: Buffer for the generated pseudo-random key
 * @outlen: Number of bytes of key to generate
 * Returns: 0 on success, -1 on failure.
 *
 * This function is used to derive new, cryptographically separate keys from a
 * given key in TLS. This PRF is defined in RFC 2246, Chapter 5.
 */
int tls_prf(const u8 *secret, size_t secret_len, const char *label,
	    const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
{
	size_t L_S1, L_S2, i;
	const u8 *S1, *S2;
	u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN];
	u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN];
	int MD5_pos, SHA1_pos;
	const u8 *MD5_addr[3];
	size_t MD5_len[3];
	const unsigned char *SHA1_addr[3];
	size_t SHA1_len[3];

	if (secret_len & 1)
		return -1;

	MD5_addr[0] = A_MD5;
	MD5_len[0] = MD5_MAC_LEN;
	MD5_addr[1] = (unsigned char *) label;
	MD5_len[1] = os_strlen(label);
	MD5_addr[2] = seed;
	MD5_len[2] = seed_len;

	SHA1_addr[0] = A_SHA1;
	SHA1_len[0] = SHA1_MAC_LEN;
	SHA1_addr[1] = (unsigned char *) label;
	SHA1_len[1] = os_strlen(label);
	SHA1_addr[2] = seed;
	SHA1_len[2] = seed_len;

	/* RFC 2246, Chapter 5
	 * A(0) = seed, A(i) = HMAC(secret, A(i-1))
	 * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + ..
	 * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed)
	 */

	L_S1 = L_S2 = (secret_len + 1) / 2;
	S1 = secret;
	S2 = secret + L_S1;
	if (secret_len & 1) {
		/* The last byte of S1 will be shared with S2 */
		S2--;
	}

	hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5);
	hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1);

	MD5_pos = MD5_MAC_LEN;
	SHA1_pos = SHA1_MAC_LEN;
	for (i = 0; i < outlen; i++) {
		if (MD5_pos == MD5_MAC_LEN) {
			hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5);
			MD5_pos = 0;
			hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5);
		}
		if (SHA1_pos == SHA1_MAC_LEN) {
			hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len,
					 P_SHA1);
			SHA1_pos = 0;
			hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1);
		}

		out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos];

		MD5_pos++;
		SHA1_pos++;
	}

	return 0;
}
#endif /* CONFIG_NO_TLS_PRF */


#ifndef CONFIG_NO_PBKDF2

static void pbkdf2_sha1_f(const char *passphrase, const char *ssid,
			  size_t ssid_len, int iterations, unsigned int count,
			  u8 *digest)
{
	unsigned char tmp[SHA1_MAC_LEN], tmp2[SHA1_MAC_LEN];
	int i, j;
	unsigned char count_buf[4];
	const u8 *addr[2];
	size_t len[2];
	size_t passphrase_len = os_strlen(passphrase);

	addr[0] = (u8 *) ssid;
	len[0] = ssid_len;
	addr[1] = count_buf;
	len[1] = 4;

	/* F(P, S, c, i) = U1 xor U2 xor ... Uc
	 * U1 = PRF(P, S || i)
	 * U2 = PRF(P, U1)
	 * Uc = PRF(P, Uc-1)
	 */

	count_buf[0] = (count >> 24) & 0xff;
	count_buf[1] = (count >> 16) & 0xff;
	count_buf[2] = (count >> 8) & 0xff;
	count_buf[3] = count & 0xff;
	hmac_sha1_vector((u8 *) passphrase, passphrase_len, 2, addr, len, tmp);
	os_memcpy(digest, tmp, SHA1_MAC_LEN);

	for (i = 1; i < iterations; i++) {
		hmac_sha1((u8 *) passphrase, passphrase_len, tmp, SHA1_MAC_LEN,
			  tmp2);
		os_memcpy(tmp, tmp2, SHA1_MAC_LEN);
		for (j = 0; j < SHA1_MAC_LEN; j++)
			digest[j] ^= tmp2[j];
	}
}


/**
 * pbkdf2_sha1 - SHA1-based key derivation function (PBKDF2) for IEEE 802.11i
 * @passphrase: ASCII passphrase
 * @ssid: SSID
 * @ssid_len: SSID length in bytes
 * @iterations: Number of iterations to run
 * @buf: Buffer for the generated key
 * @buflen: Length of the buffer in bytes
 *
 * This function is used to derive PSK for WPA-PSK. For this protocol,
 * iterations is set to 4096 and buflen to 32. This function is described in
 * IEEE Std 802.11-2004, Clause H.4. The main construction is from PKCS#5 v2.0.
 */
void pbkdf2_sha1(const char *passphrase, const char *ssid, size_t ssid_len,
		 int iterations, u8 *buf, size_t buflen)
{
	unsigned int count = 0;
	unsigned char *pos = buf;
	size_t left = buflen, plen;
	unsigned char digest[SHA1_MAC_LEN];

	while (left > 0) {
		count++;
		pbkdf2_sha1_f(passphrase, ssid, ssid_len, iterations, count,
			      digest);
		plen = left > SHA1_MAC_LEN ? SHA1_MAC_LEN : left;
		os_memcpy(pos, digest, plen);
		pos += plen;
		left -= plen;
	}
}

#endif /* CONFIG_NO_PBKDF2 */


#ifdef INTERNAL_SHA1

struct SHA1Context {
	u32 state[5];
	u32 count[2];
	unsigned char buffer[64];
};

typedef struct SHA1Context SHA1_CTX;

#ifndef CONFIG_CRYPTO_INTERNAL
static void SHA1Init(struct SHA1Context *context);
static void SHA1Update(struct SHA1Context *context, const void *data, u32 len);
static void SHA1Final(unsigned char digest[20], struct SHA1Context *context);
#endif /* CONFIG_CRYPTO_INTERNAL */
static void SHA1Transform(u32 state[5], const unsigned char buffer[64]);


/**
 * sha1_vector - SHA-1 hash for data vector
 * @num_elem: Number of elements in the data vector
 * @addr: Pointers to the data areas
 * @len: Lengths of the data blocks
 * @mac: Buffer for the hash
 */
void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
		 u8 *mac)
{
	SHA1_CTX ctx;
	size_t i;

	SHA1Init(&ctx);
	for (i = 0; i < num_elem; i++)
		SHA1Update(&ctx, addr[i], len[i]);
	SHA1Final(mac, &ctx);
}


#ifndef CONFIG_NO_FIPS186_2_PRF
int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen)
{
	u8 xkey[64];
	u32 t[5], _t[5];
	int i, j, m, k;
	u8 *xpos = x;
	u32 carry;

	if (seed_len > sizeof(xkey))
		seed_len = sizeof(xkey);

	/* FIPS 186-2 + change notice 1 */

	os_memcpy(xkey, seed, seed_len);
	os_memset(xkey + seed_len, 0, 64 - seed_len);
	t[0] = 0x67452301;
	t[1] = 0xEFCDAB89;
	t[2] = 0x98BADCFE;
	t[3] = 0x10325476;
	t[4] = 0xC3D2E1F0;

	m = xlen / 40;
	for (j = 0; j < m; j++) {
		/* XSEED_j = 0 */
		for (i = 0; i < 2; i++) {
			/* XVAL = (XKEY + XSEED_j) mod 2^b */

			/* w_i = G(t, XVAL) */
			os_memcpy(_t, t, 20);
			SHA1Transform(_t, xkey);
			_t[0] = host_to_be32(_t[0]);
			_t[1] = host_to_be32(_t[1]);
			_t[2] = host_to_be32(_t[2]);
			_t[3] = host_to_be32(_t[3]);
			_t[4] = host_to_be32(_t[4]);
			os_memcpy(xpos, _t, 20);

			/* XKEY = (1 + XKEY + w_i) mod 2^b */
			carry = 1;
			for (k = 19; k >= 0; k--) {
				carry += xkey[k] + xpos[k];
				xkey[k] = carry & 0xff;
				carry >>= 8;
			}

			xpos += SHA1_MAC_LEN;
		}
		/* x_j = w_0|w_1 */
	}

	return 0;
}
#endif /* CONFIG_NO_FIPS186_2_PRF */


/* ===== start - public domain SHA1 implementation ===== */

/*
SHA-1 in C
By Steve Reid <sreid@sea-to-sky.net>
100% Public Domain

-----------------
Modified 7/98 
By James H. Brown <jbrown@burgoyne.com>
Still 100% Public Domain

Corrected a problem which generated improper hash values on 16 bit machines
Routine SHA1Update changed from
	void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
len)
to
	void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
long len)

The 'len' parameter was declared an int which works fine on 32 bit machines.
However, on 16 bit machines an int is too small for the shifts being done
against
it.  This caused the hash function to generate incorrect values if len was
greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().

Since the file IO in main() reads 16K at a time, any file 8K or larger would
be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
"a"s).

I also changed the declaration of variables i & j in SHA1Update to 
unsigned long from unsigned int for the same reason.

These changes should make no difference to any 32 bit implementations since
an
int and a long are the same size in those environments.

--
I also corrected a few compiler warnings generated by Borland C.
1. Added #include <process.h> for exit() prototype
2. Removed unused variable 'j' in SHA1Final
3. Changed exit(0) to return(0) at end of main.

ALL changes I made can be located by searching for comments containing 'JHB'
-----------------
Modified 8/98
By Steve Reid <sreid@sea-to-sky.net>
Still 100% public domain

1- Removed #include <process.h> and used return() instead of exit()
2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net

-----------------
Modified 4/01
By Saul Kravitz <Saul.Kravitz@celera.com>
Still 100% PD
Modified to run on Compaq Alpha hardware.  

-----------------
Modified 4/01
By Jouni Malinen <j@w1.fi>
Minor changes to match the coding style used in Dynamics.

Modified September 24, 2004
By Jouni Malinen <j@w1.fi>
Fixed alignment issue in SHA1Transform when SHA1HANDSOFF is defined.

*/

/*
Test Vectors (from FIPS PUB 180-1)
"abc"
  A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
  84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
A million repetitions of "a"
  34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/

#define SHA1HANDSOFF

#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#ifndef WORDS_BIGENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \
	(rol(block->l[i], 8) & 0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
	block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))

/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) \
	z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
	w = rol(w, 30);
#define R1(v,w,x,y,z,i) \
	z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
	w = rol(w, 30);
#define R2(v,w,x,y,z,i) \
	z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
#define R3(v,w,x,y,z,i) \
	z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
	w = rol(w, 30);
#define R4(v,w,x,y,z,i) \
	z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
	w=rol(w, 30);


#ifdef VERBOSE  /* SAK */
void SHAPrintContext(SHA1_CTX *context, char *msg)
{
	printf("%s (%d,%d) %x %x %x %x %x\n",
	       msg,
	       context->count[0], context->count[1], 
	       context->state[0],
	       context->state[1],
	       context->state[2],
	       context->state[3],
	       context->state[4]);
}
#endif

/* Hash a single 512-bit block. This is the core of the algorithm. */

static void SHA1Transform(u32 state[5], const unsigned char buffer[64])
{
	u32 a, b, c, d, e;
	typedef union {
		unsigned char c[64];
		u32 l[16];
	} CHAR64LONG16;
	CHAR64LONG16* block;
#ifdef SHA1HANDSOFF
	u32 workspace[16];
	block = (CHAR64LONG16 *) workspace;
	os_memcpy(block, buffer, 64);
#else
	block = (CHAR64LONG16 *) buffer;
#endif
	/* Copy context->state[] to working vars */
	a = state[0];
	b = state[1];
	c = state[2];
	d = state[3];
	e = state[4];
	/* 4 rounds of 20 operations each. Loop unrolled. */
	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
	/* Add the working vars back into context.state[] */
	state[0] += a;
	state[1] += b;
	state[2] += c;
	state[3] += d;
	state[4] += e;
	/* Wipe variables */
	a = b = c = d = e = 0;
#ifdef SHA1HANDSOFF
	os_memset(block, 0, 64);
#endif
}


/* SHA1Init - Initialize new context */

void SHA1Init(SHA1_CTX* context)
{
	/* SHA1 initialization constants */
	context->state[0] = 0x67452301;
	context->state[1] = 0xEFCDAB89;
	context->state[2] = 0x98BADCFE;
	context->state[3] = 0x10325476;
	context->state[4] = 0xC3D2E1F0;
	context->count[0] = context->count[1] = 0;
}


/* Run your data through this. */

void SHA1Update(SHA1_CTX* context, const void *_data, u32 len)
{
	u32 i, j;
	const unsigned char *data = _data;

#ifdef VERBOSE
	SHAPrintContext(context, "before");
#endif
	j = (context->count[0] >> 3) & 63;
	if ((context->count[0] += len << 3) < (len << 3))
		context->count[1]++;
	context->count[1] += (len >> 29);
	if ((j + len) > 63) {
		os_memcpy(&context->buffer[j], data, (i = 64-j));
		SHA1Transform(context->state, context->buffer);
		for ( ; i + 63 < len; i += 64) {
			SHA1Transform(context->state, &data[i]);
		}
		j = 0;
	}
	else i = 0;
	os_memcpy(&context->buffer[j], &data[i], len - i);
#ifdef VERBOSE
	SHAPrintContext(context, "after ");
#endif
}


/* Add padding and return the message digest. */

void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
{
	u32 i;
	unsigned char finalcount[8];

	for (i = 0; i < 8; i++) {
		finalcount[i] = (unsigned char)
			((context->count[(i >= 4 ? 0 : 1)] >>
			  ((3-(i & 3)) * 8) ) & 255);  /* Endian independent */
	}
	SHA1Update(context, (unsigned char *) "\200", 1);
	while ((context->count[0] & 504) != 448) {
		SHA1Update(context, (unsigned char *) "\0", 1);
	}
	SHA1Update(context, finalcount, 8);  /* Should cause a SHA1Transform()
					      */
	for (i = 0; i < 20; i++) {
		digest[i] = (unsigned char)
			((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) &
			 255);
	}
	/* Wipe variables */
	i = 0;
	os_memset(context->buffer, 0, 64);
	os_memset(context->state, 0, 20);
	os_memset(context->count, 0, 8);
	os_memset(finalcount, 0, 8);
}

/* ===== end - public domain SHA1 implementation ===== */

#endif /* INTERNAL_SHA1 */